If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-40x-384=0
a = 1; b = -40; c = -384;
Δ = b2-4ac
Δ = -402-4·1·(-384)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-56}{2*1}=\frac{-16}{2} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+56}{2*1}=\frac{96}{2} =48 $
| 12x+24=12x+20 | | 19m-20=9m-12 | | 12x+24=10x+20 | | y+3/6=-10 | | (y-9)/4=5 | | c+16=25 | | 9x-46x+11=90 | | 9x-46x+11=180 | | 16=s+19 | | -7-b=-b+b | | 2x-1-x=7 | | 84=1/2b*14 | | 11x=45+9 | | 4/3-14x=-8 | | 200m-125m+49,975=45,450-150m | | 0=6k+7k | | 2x+11+4x-4=6x+9-4/2 | | -13v=-234 | | 3w+w/2+1=-w | | p/4-9=16 | | 5=-7n+2n | | 7u+9=11u | | p/8+3=10 | | 3(×+6)+5x=4(2x)+18 | | v/19+16=19 | | 2|2x+3|=|x-3| | | 106+6s-8=90 | | 17w-20=0 | | (7x+19)=9x-3) | | 3{x+8}=48 | | –4w^2=28 | | 9=n-(10) |